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Abstract
An algebraic criterion for the vanishing of the beta function for renormalizable
quantum field theories is presented. Use is made of the descent equations
following from the Wess–Zumino consistency condition. In some cases, these
equations relate the fully quantized action to a local gauge invariant polynomial.
The vanishing of the anomalous dimension of this polynomial enables us to
establish a non-renormalization theorem for the beta function βg , stating that
if the one-loop order contribution vanishes, then βg will vanish to all orders of
perturbation theory. As a by-product, the special case in which βg is only of
one-loop order, without further corrections, is also covered. The examples of
the N = 2, 4 supersymmetric Yang–Mills theories are worked out in detail.

PACS numbers: 02.10.De, 03.70.+k, 11.10.-z, 11.15.-q, 11.30.Pb

1. Introduction

The search for ultraviolet finite renormalizable models has always been one of the most
attractive and relevant aspect of quantum field theory. The requirement of a softer
ultraviolet behaviour has motivated the construction of many models, including the Yang–
Mills supersymmetric theories (SYM), the supergravities as well as the superstrings.

The ultraviolet finiteness is understood here as the vanishing, to all orders in the
perturbative loop expansion, of the beta functions of the theory. This means that the dependence
from the renormalization scale can be fully accounted by the unphysical anomalous dimensions
of the field amplitudes which are, in general, nonvanishing.
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So far, many ultraviolet finite theories have been given in different space-time dimensions.
For instance, the Wess–Zumino–Witten models [1] and the N = (4, 0) supersymmetric σ -
model [2] are examples of two-dimensional theories which turn out to be conformal and
superconformal, respectively.

In three space-time dimensions, the so-called topologically massive Yang–Mills theory,
obtained by adding the Chern–Simons action to the Yang–Mills term, is one of the most
celebrated examples of a fully4 finite theory [3–5] with applications in QCD at nonzero
temperature. Also, the pure Chern–Simons theory is known to have vanishing beta function
and field anomalous dimensions to all orders of perturbation theory [6–10]. Its topological
nature has allowed to use perturbative techniques to evaluate topological invariants of knots
theory [11]. The beta function corresponding to the Chern–Simons coefficient also vanishes in
the presence of matter [12–15]. More generally, in the Abelian case this coefficient is known to
be strongly constrained by the Coleman–Hill theorem [16], implying that it can receive at most
one-loop finite corrections. We remark that the one-loop induced Chern–Simons coefficient
has an important physical meaning, indeed identifying the transverse conductivity. In addition,
as shown in [17], this coefficient turns out to be quantized by a topological argument. It is
worth mentioning here that, recently, the Coleman–Hill theorem has been extended to the
non-Abelian case [18].

Turning now to four dimensions, the supersymmetric gauge theories certainly display
a unique ultraviolet behaviour, leading in some cases to finite renormalizable field theories.
This is the case of N = 4 SYM, which provided the first example of a four-dimensional
superconformal gauge theory [19, 20]. Concerning the N = 2 SYM, although it is not
ultraviolet finite, its beta function obeys a remarkable nonrenormalization theorem, stating
that it receives at most one-loop contributions [21, 22]. In the case of the N = 1 SYM a set
of necessary and sufficient conditions for the vanishing of the beta function to all orders of
perturbation theory has been established [23], making it possible to classify the N = 1 finite
SYM theories.

Examples of higher-dimensional finite field theories are provided by the BF models [24],
which belong to the class of the Schwarz-type topological field theories [25].

The ultraviolet finiteness of the above-mentioned theories was checked first by explicit
loop calculations [3–5, 7, 12, 19, 21], and later proven, to all orders of perturbation theory, by
using a suitable set of Ward identities characterizing the symmetry content of each model.

For instance, in the case of the (4, 0) two-dimensional σ model the use of the
BRST technique has allowed for a regularization-independent proof of the absence of the
superconformal anomaly [26]. A BRST approach has also been employed in the case of the
Wess–Zumino–Witten models [27] and of the four-dimensional N = 4 SYM [28, 29].

Concerning the N = 2 SYM, the proof of the nonrenormalization theorem of its beta
function given in [30] is based on a key relationship between the whole action of N = 2 and a
local gauge invariant polynomial which turns out to have vanishing anomalous dimension.
A different proof of this theorem is available also within the context of the harmonic
superspace [31].

A detailed analysis of the quantum properties of the supercurrent multiplet is at the basis
of the finiteness conditions for N = 1 SYM theories [23].

The vanishing of the beta function for the topological field theories can be proven in a
rather general way by making use of an additional nonanomalous symmetry, called vector
supersymmetry, present in both Schwarz- and Witten-type theories [32, 33]. The existence of
this further symmetry relies on the fact that the energy–momentum tensor of the topological

4 In this case the anomalous dimensions of the fields vanish as well.
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theories can be cast in the form of a pure BRST variation. We also underline that the trace of
the energy–momentum tensor, whose integrated quantum extension is directly related to the
beta function, can be characterized by a set of Ward identities based on a local formulation
of the dilation invariance [8, 14, 15, 34, 35]. This approach has been successfully applied to
pure Chern–Simons [8] and to topologically massive Yang–Mills [14,15]. In this latter case a
different proof of the finiteness has been given in [36], using a cohomological argument for a
generalized class of Yang–Mills theories.

Besides the use of Ward identities, the reduction of couplings introduced by Oehme and
Zimmermann [37] provides a very powerful and original method in order to reduce the number
of independent coupling constants present in a given model. The requirement that the reduced
theory has fewer independent couplings leads to a nontrivial set of reduction equations, relating
the various beta functions. Although some of the relationships between the couplings can be
associated to the existence of symmetries, one has to observe that the solutions of the reduction
equations do not always seem to correspond to any known invariance [37].

The aim of this work is to present a purely algebraic criterion, of general applicability, for
the ultraviolet finiteness. The approach relies on the BRST cohomology [38] and exploits the
set of descent equations following from the Wess–Zumino consistency condition. It turns out
indeed that, in some cases, these equations allow one to establish a one-to-one correspondence
between the quantized action of a given model and a local field polynomial, belonging to
the cohomology of the BRST operator in the lowest level of the descent equations. As a
consequence, the beta function of the theory can be proven to be related to the anomalous
dimension of this polynomial. The absence of this anomalous dimension therefore entails a
nonrenormalization theorem for the beta function. This theorem states that if the beta function
vanishes at one-loop order, it will vanish to all orders of perturbation theory, implying the
ultraviolet finiteness of the model. As a by-product, it will be also possible to cover the case in
which the beta function happens to be only of one-loop order, without any further corrections.
The advantage of this approach is that the anomalous dimension of the field polynomial to
which the quantized action is related, is easier to control than the proper beta function thanks
to the existence of additional Ward identities as for instance the ghost equation [10], always
present in the Yang–Mills type theories in the Landau gauge.

The paper is organized as follows. In section 2 the general assumptions needed for the
finiteness theorem are discussed. Section 3 is devoted to the proof of the theorem, including
the analysis of the absence of higher-order corrections for the beta function. In section 4
several examples will be worked out. These include the case of Chern–Simons theory coupled
to matter, the N = 2 and the 4 SYM theories in four dimensions. Finally, in section 5 we
summarize our main results, presenting the conclusion.

2. The general set up

2.1. Classical aspects

Let us start by fixing the notations and by specifying the classical and quantum assumptions
about the structure of the models which will be considered throughout. We shall work in a flat
D-dimensional Euclidean space-time equipped with a set of fields generically denoted by {�i},
i labelling the different kinds of fields needed to properly quantize the model, i.e. gauge fields,
matter fields, ghosts, ghosts for ghosts, etc. According to the Batalin–Vilkovisky quantization
procedure [39], for each field �i with ghost number N�i and dimension d�i , one introduces a
corresponding antifield �i∗ with ghost number −(1 + N�i ) and dimension (D − d�i ).
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We shall start thus with a classical fully quantized action �(�i,�i∗) which will be
considered to be massless and, for simplicity, to have a unique coupling constant g. The
action �(�i,�i∗) is power-counting renormalizable and obeys the classical Slavnov–Taylor
identity

S(�) =
∫

dDx
δ�

δ�i

δ�

δ�i∗ = 0 (2.1)

which leads to the nilpotent linearized operator B�

B� =
∫

dDx

(
δ�

δ�i

δ

δ�i∗ +
δ�

δ�i∗
δ

δ�i

)
B�B� = 0. (2.2)

Concerning the dependence from the coupling constant g, we shall make use of the following
parametrization:

� = 1

g2

∫
dDx Linv + �gf + ��∗ (2.3)

where Linv is the classical invariant Lagrangian identified as the part of � which is independent
from the antifields, the ghosts and the Lagrange multipliers, entering respectively the gauge-
fixing term �gf and the antifield action ��∗ . As is well known, with this parametrization an
L-loop Feynman diagram behaves as g2(L−1).

Now differentiating the Slavnov–Taylor identity (2.1) with respect to the coupling constant
g, we obtain the equation

B�

∂�

∂g
= 0 (2.4)

showing that ∂�/∂g is an invariant cocycle. Actually, according to the requirement that g is
a physical parameter of the theory, the cocycle ∂�/∂g turns out to be nontrivial5, identifying
therefore the cohomology of the operator B� in the sector of the integrated local polynomials
with ghost number zero and dimension D.

Owing to the parametrization (2.3), it follows that

∂�

∂g
= − 2

g3

∫
ω0

D + B�� −1 (2.5)

where

ω0
D = dDx Linv + (�∗ − dependent terms) (2.6)

is a nonintegrated field polynomial with form degree D and zero ghost number and �−1 is a
trivial integrated cocycle with negative ghost number. The appearance of possible antifields-
dependent terms in the right-hand side of equation (2.6) accounts for the case in which one
has to deal with open gauge algebras, which close only up to equations of motion. As we shall
see, this will be the case of N = 2 and 4 SYM.

Hence, the integrated consistency condition

B�

∫
ω0

D = 0 (2.7)

5 It can be proven [40] that physical quantities, such as the Green functions of gauge invariant operators, are
independent from a parameter α for which ∂�/∂α is trivial, i.e. ∂α� = B�� for some local polynomial �. Such a
parameter is called a gauge parameter.
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can be translated at the nonintegrated level, giving rise to the following set of descent
equations [40]:

B� ω0
D + dω1

D−1 = 0
B� ω1

D−1 + dω2
D−2 = 0

. . .

B� ωD−1
1 + dωD

0 = 0
B� ωD

0 = 0

(2.8)

with ω
p

D−p (p = 0, . . . , D) being local field polynomials with form degree (D−p) and ghost
number p.

In what follows we will be interested in the class of models fulfilling the two assumptions
given below:

(i) The cohomology of B� is empty in all sectors with form degree 1 � p � D.
(ii) The sector with form degree zero is nonvanishing, with a unique nontrivial element ωD

0 .

2.2. Quantum aspects

Concerning the quantum aspects, the first requirement is the absence of anomalies in the
quantum extension of the Slavnov–Taylor identity, i.e.

� = � + O (h̄)

S (�) = 0
(2.9)

where � is the 1PI generating functional.
As usual, the dependence of � from the renormalization point µ is governed by the

Callan–Symanzik equation, whose generic form reads

C � = 0 C ≡ µ
∂

∂µ
+ h̄βg

∂

∂g
− h̄ γ�i N�i (2.10)

where βg is the beta function, γ�i stand for the anomalous dimensions of the fields, and N�i

is the counting operator

N�i =
∫

dDx

(
�i δ

δ�i
− �i∗ δ

δ�i∗

)
. (2.11)

Following the procedure outlined in [40] and making use of the absence of anomalies in the
Slavnov–Taylor identity (2.9), the cocycles

{
ω

p

D−p; 0 � p � D
}

can be promoted to quantum
insertions [ωp

D−p · �] fulfilling the quantum version of the descent equations (2.8), i.e.

B�[ωp

D−p · �] + d[ωp+1
D−p−1 · �] = 0

B�[ωD
0 · �] = 0.

(2.12)

As shown in [40], the insertions [ωp

D−p · �] possess the same anomalous dimension γω and
obey the following Callan–Symanzik equation:

C[ωp

D−p · �] + h̄γω[ωp

D−p · �] = h̄ B� [�p−1
D−p · �] (2.13)

for some cohomologically trivial local polynomial �p−1
D−p.

The last important assumption which we shall require is that the anomalous dimension γω

of the insertion [ωD
0 · �] vanishes, i.e. γω = 0. Thus

C[ωD
0 · �] = h̄ B�[�D−1

0 · �] (2.14)
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which, of course, implies that

C
[ ∫

ω0
D · �

]
= h̄ B�

[ ∫
�−1

D · �
]
. (2.15)

In summary, we are dealing with a theory for which there exists a one-to-one relationship
between the solutions ω0

D and ωD
0 corresponding to the top and bottom levels of the classical

descent equations (2.8). In addition, besides the absence of anomalies in the Slavnov–Taylor
identity, the quantum insertion [ωD

0 ·�] is required to have vanishing anomalous dimension, as
stated by equation (2.14). These features will strongly constrain the beta functionβg . The main
idea underlying this construction is that of exploiting the one to one correspondence between
∂�/∂g and the cocycle ωD

0 , which is not renormalized. It turns out that the nonrenormalization
properties of ωD

0 affect directly all cocycles entering the descent equations (2.8), including, in
particular, ∂�/∂g and its anomalous dimension, which is nothing but the beta function βg .

3. The algebraic criterion for the ultraviolet finiteness

3.1. The finiteness theorem

The aim of this section is to cast the previous considerations into a precise statement about
the beta function. Let β(n)

g denote the contribution of order h̄n to the beta function βg . The
theory is specified by a quantum vertex functional � = � + O (h̄), which fulfils all the
above-mentioned assumptions, namely, the classical requirements (i) and (ii), and the quantum
properties encoded in equations (2.9) and (2.15).

The following theorem holds.

Theorem. If the one-loop order contribution β(1)
g vanishes, i.e. β(1)

g = 0, then βg vanishes to
all orders of perturbation theory.

Proof. In order to prove the theorem, let us first show that the following identity is valid:

∂�

∂g
= − 2

g3
ã

[ ∫
ω0

D · �
]

+ B�[�−1 · �] (3.16)

where [�−1 ·�] is an integrated insertion with negative ghost number and ã is a formal power
series in h̄

ã =
(

1 +
∞∑
j=1

h̄j aj

)
. (3.17)

Notice also that the coefficients aj are dimensionless since the theory is considered to be
massless.

Equation (3.16) is indeed easily established by induction in h̄. At the zeroth order it is
obviously verified due to equation (2.5). Let us suppose then that it holds at the order h̄n, i.e.

∂�

∂g
= − 2

g3

(
1 +

n∑
j=1

h̄j aj

)[∫
ω0

D · �
]

+ B�[�̂−1 · �] + h̄n+1!n+1 + O(h̄n+2) (3.18)

where, from the quantum action principle [40], !n+1 is an integrated local polynomial with
ghost number zero which obeys the condition

B�!n+1 = 0 (3.19)
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following from

B�

∂�

∂g
= 0 B�B� = 0. (3.20)

Therefore, taking into account that the unique nontrivial cohomology class of B� with the
same quantum numbers of the action is

∫
ω0

D , we get

!n+1 = an+1

∫
ω0

D + B�!̂−1
n+1 (3.21)

which establishes the validity of equation (3.16) at the order h̄n+1, and hence to all orders
by induction.

Now, coming back to the proof of the theorem, we act with the Callan–Symanzik operator
C on the equation (3.16). Making use of equations (2.10) and (2.15), and recalling the exact
commutation relation

CB� − B�C = 0 (3.22)

we get the condition[
C, ∂

∂g

]
� = −

(
C
(

2

g3
ã

))[∫
ω0

D · �
]

+ h̄B�["−1 · �] (3.23)

for some irrelevant trivial insertion ["−1 · �] with negative ghost number. Working out the
commutator in the left-hand side and observing that the dimensionless coefficients aj do not
depend on µ, we obtain((

∂

∂g
βg

)
2

g3
ã + βg

∂

∂g

(
2

g3
ã

))[∫
ω0

D · �
]

= B�["̂−1 · �] (3.24)

which, due to the fact that the insertion
[∫

ω0
D · �] cannot be written as a pure B�-variation,

finally implies the condition(
∂

∂g
βg

)
2

g3
ã + βg

∂

∂g

(
2

g3
ã

)
= 0. (3.25)

This equation expresses the content of the theorem, stating indeed that if the one-loop
contribution to the beta function vanishes, β(1)

g = 0, then βg = 0.
For a better understanding of the equation (3.25) let us expand βg and ã in powers of

h̄, yielding

Order 1.

g
∂β(1)

g

∂g
− 3β(1)

g = 0 ⇒ β(1)
g ∼ g3. (3.26)

Order 2. (
g
∂β(2)

g

∂g
− 3β(2)

g

)
+ β(1)

g g
∂a1

∂g
= 0. (3.27)
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Order n.(
g
∂β(n)

g

∂g
− 3β(n)

g

)
+

n−1∑
i=1

((
g
∂β(n−i)

g

∂g
− 3β(n−i)

g

)
ai + β(n−i)

g g
∂ai

∂g

)
= 0. (3.28)

It becomes apparent thus that if β(1)
g = 0 in the above equations, then β(n)

g = 0 for all n.
Before discussing the applications of this result, let us underline that the present set up

also provides a simple algebraic understanding of the case in which βg receives contributions
only up to one-loop order as, for instance, in the N = 2 SYM. This will be the aim of the
next section. �

3.2. Absence of higher-order corrections

It is known that the beta function βg depends on the renormalization scheme, only the
first-order coefficient being universal [41]. However, for some theories it happens that βg

receives contributions only up to one-loop order. This statement means really that there exists
renormalization schemes in which all the higher loop corrections vanish. These schemes can
be identified in an algebraic way by the following proposition.

Proposition. For any renormalization scheme in which the following identity holds:

∂�

∂g
= − 2

g3

[ ∫
ω0

D · �
]

+ B�[�−1 · �] (3.29)

for some integrated insertion [�−1 · �], then βg has at most one-loop contributions.

Proof. The equation (3.29) is equivalent to (3.16) with the requirement that now aj = 0 for
any j . Repeating therefore the same steps as before, the equation (3.25) becomes

g
∂βg

∂g
− 3βg = 0 (3.30)

which implies that βg has only one-loop contributions, i.e. βg ∼ g3. The identity (3.29) will
turn out to be very useful in the analysis of N = 2 SYM. �

4. Applications

In this section we shall present some applications of the finiteness criterion discussed
previously. Let us begin with the case of the three-dimensional non-Abelian Chern–Simons
theory coupled to spinor matter.

4.1. Chern–Simons coupled to matter

The classical invariant action of the model is given by

Sinv =
∫

d3x

(
1

2g2
εµνρ Tr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
+ i( γµ Dµ(

)
. (4.31)

The gauge field Aµ belongs to the adjoint representation of a general compact Lie group G:

Aµ(x) = Aa
µ(x) τa (4.32)

where the matrices τa are the generators of the group, chosen to be anti-Hermitean:

[τa, τb] = fabc τc Tr τaτb = δab. (4.33)
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Table 1. Dimension, ghost number and nature of the fields.

Aµ c c b ( ( A∗
µ c∗ (∗ (

∗

Dim. 1 0 1 1 1 1 2 3 2 2
N.Ghost 0 1 −1 0 0 0 −1 −2 −1 −1
Nature C A A C A A A C C C

The matter fields belong to some finite representation of G, the corresponding generators being
denoted by Ta . Hence, for the covariant derivative we have

Dµ( = (∂µ + Aa
µTa)(. (4.34)

Adopting the Landau condition, the gauge-fixing term reads

Sgf = s Tr
∫

d3x c∂µAµ = Tr
∫

d3x
(
b∂µAµ + c∂µDµc

)
(4.35)

where c, c and b denote respectively, the Faddeev–Popov ghost, the antighost and the
Lagrangian multiplier, all of them in the same representation as Aµ. The BRST operator
s acts on the fields as follows:

sAµ = −Dµc = − (∂µc + [Aµ, c]
)

sc = c2

s( = caTa (

s( = ( Ta c
a

sc = b

sb = 0.

(4.36)

Coupling now the nonlinear BRST transformations to the antifields A∗
µ, c∗, (

∗
, (∗

Sext =
∫

d3x
(

Tr (−A∗
µD

µc + c∗c2) + (
∗
caTa ( − ( Ta c

a (∗) (4.37)

it turns out that the fully quantized classical action �

� = Sinv + Sgf + Sext (4.38)

obeys the Slavnov–Taylor identity

S(�) =
∫

d3x

(
Tr

(
δ�

δA∗
µ

δ�

δAµ
+

δ�

δc∗
δ�

δc
+ b

δ�

δc

)
+

δ�

δ(
∗
δ�

δ(
− δ�

δ(∗
δ�

δ(

)
= 0. (4.39)

Accordingly, the nilpotent linearized operator B� is given by

B� =
∫

d3x

(
Tr

(
δ�

δA∗
µ

δ

δAµ
+

δ�

δAµ

δ

δA∗
µ

+
δ�

δc∗
δ

δc
+

δ�

δc

δ

δc∗ + b
δ

δc

)

+
δ�

δ(
∗

δ

δ(
+

δ�

δ(

δ

δ(
∗ − δ�

δ(∗
δ

δ(
− δ�

δ(

δ

δ(∗

)
. (4.40)

For further use, the quantum numbers of all fields and antifields are displayed in table 1.

Having quantized the theory, let us turn to the characterization of the cohomology of B�

in the sector of the invariant counterterms:

B��0 = 0 (4.41)
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where �0 is an integrated local polynomial with dimension three and zero ghost number.
Setting

�0 =
∫

d3x ω0 (4.42)

we obtain the following set of descent equations:

B�ω0 = ∂µω1
µ

B�ω1
µ = ∂νω2

[µν]

B�ω2
[µν] = ∂ρω3

[µνρ]

B�ω3
[µνρ] = 0.

(4.43)

The unique nontrivial solution for ω3
[µνρ] is given by

ω3
[µνρ] = ς εµνρ

1
3 Tr c3 (4.44)

where ς is a constant parameter. The higher cocycles ω0, ω1
µ and ω2

[µν] are easily worked out
and found to be

ω2
[µν] = −ς εµνρ Tr c∂ρc

ω1
µ = ς εµνρ Tr Aν∂ρc

ω0 = −ς εµνρ Tr (Aµ∂νAρ + 2
3AµAνAρ).

(4.45)

Concerning possible contributions coming from the spinor fields and the antifields, it turns out
by explicit inspection that they give rise only to cohomologically trivial solutions, as can be
straightforwardly checked with the Dirac term appearing in the complete action �, namely

i(γµDµ( = B�(((∗). (4.46)

The solution given in equations (4.44) and (4.45) is thus the most general nontrivial solution
of the descent equations (4.43). Of course, one always has the freedom of adding trivial terms.

Acting now with ∂/∂g on the Slavnov–Taylor identity one obtains

B�

∂�

∂g
= 0 (4.47)

with
∂�

∂g
= − 1

g3

∫
d3x εµνρ Tr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
. (4.48)

It becomes apparent therefore that ∂�/∂g coincides with �0 by taking ς = 1/g3. In
particular, ∂�/∂g identifies the unique nontrivial class of the cohomology of B� in the sector
of counterterms. Moreover, there exists a one-to-one relationship between ∂�/∂g and the
ghost polynomial Tr c3, implying that all classical assumptions of the finiteness criterion are
fulfilled. Concerning now the quantum aspects, we point out that the Slavnov–Taylor identity
can be established for the vertex functional �, due to the well known absence of the gauge
anomaly in three dimensions [40].

According then to the general set up, the last requirement to be satisfied in order to apply the
finiteness theorem is to prove that the gauge invariant field polynomial Tr c3 can be promoted
to a quantum insertion

[
Tr c3 · �] with vanishing anomalous dimension. This is ensured by

the so-called ghost equation Ward identity [10, 40]∫
d3x

(
δ

δc
+

[
c,

δ

δb

])
� = �cl (4.49)
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where �cl is a classical breaking

�cl =
∫

d3x
(
[A∗

µ,A
µ] − [c∗, c] +

(
(

∗
T a ( + ( T a (∗)τa). (4.50)

As shown in detail in [10, 40] the Ward identity (4.49) allows one to control the dependence
of the theory from the Faddeev–Popov ghost, implying, in particular, the vanishing of the
anomalous dimension of [Tr c3 · �] to all orders of perturbation theory.

Concerning the one-loop behaviour of the beta function, it is worth remembering here
that the ultraviolet finiteness of Chern–Simons at one-loop order, with or without matter, is
a well known result, being checked in many ways by several authors (see for instance [7]).
Therefore, according to the finiteness theorem, βg vanishes to all orders of perturbation theory.
This example shows in a rather simple way that a great amount of information on the beta
function βg follows from the knowledge of the anomalous dimension of the gauge invariant
insertion [Tr c3 · �].

4.2. N = 2 super-Yang–Mills

The nonrenormalization theorem of the beta function of N = 2 SYM, stating that βg receives
only one-loop contributions, has long been known [21,22]. Recently, a purely algebraic proof
of this result, based on BRST Ward identities, has been given in [30]. It can be considered
as a highly nontrivial realization of the algebraic finiteness criterion. In this section we shall
review the main steps of the proof within the present context.

In order to study the quantum properties of N = 2 we shall make use of the twisting
procedure which allows one to replace the spinor indices of supersymmetry (α, α̇)with Lorentz
vector indices. The physical content of the theory is left unchanged, since the twist is a
linear change of variables, and the twisted version is perturbatively indistinguishable from the
original one. However, the use of the twisted variables considerably simplifies the analysis of
the finiteness properties, allowing one to identify a subset of supercharges which is actually
relevant to control the ultraviolet behaviour.

Let us begin by sketching the twisting procedure for the N = 2 SYM in the Wess–
Zumino (WZ) gauge [30, 42]. The global symmetry group of N = 2 in four-dimensional flat
Euclidean space-time is SU(2)L×SU(2)R×SU(2)I ×U(1)R, where SU(2)L×SU(2)R is the
rotation group and SU(2)I and U(1)R are the symmetry groups corresponding to the internal
SU(2)-transformations and to the R-symmetry. The twisting procedure consists of replacing
the rotation group by SU(2)L × SU(2)′R , where SU(2)′R is the diagonal sum of SU(2)R and
SU(2)I , allowing one to identify the internal indices with the spinor indices. The fields of

the N = 2 vector multiplet in the WZ gauge are given by (Aµ,ψ
i
α, ψ

i

α̇, φ, φ), where ψi
α, ψ

i

α̇

are Weyl spinors with i = 1, 2 being the internal index of the fundamental representation of
SU(2)I , and φ, φ are complex scalars. All fields belong to the adjoint representation of the
gauge group. Under the twisted group, these fields decompose as [30, 42]

Aµ → Aµ (φ, φ) → (φ, φ)

ψi
α → (η, χµν) ψ

i

α̇ → ψµ.
(4.51)

Notice that (ψµ, χµν, η) anticommute due to their spinor nature, and χµν is a self-dual tensor
field. The action of N = 2 SYM in terms of the twisted variables is found to be [30, 42]

SN=2 = 1

g2
Tr
∫

d4x

(
1

2
F +

µνF
+µν +

1

2
φ{ψµ,ψµ} − χµν(Dµψν − Dνψµ)

+ + ηDµψ
µ

− 1
2φDµD

µφ − 1
2φ{χµν, χµν} − 1

8 [φ, η]η − 1
32 [φ, φ][φ, φ]

)
(4.52)
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where g is the unique coupling constant and

F +
µν = Fµν + 1

2εµνρσF
ρσ ˜Fµν

+ = 1
2εµνρσF

+ρσ = F +
µν

(Dµψν − Dνψµ)
+ = (Dµψν − Dνψµ) + 1

2εµνρσ (D
ρψσ − Dσψρ).

(4.53)

Also, it is easily seen that assigning to
(
Aµ,ψµ, χµν, η, φ, φ

)
the following R-charges

(0,−1, 1,−1, 2,−2), the expression (4.52) has vanishing total R-charge.
The action SN=2 is invariant under gauge transformations with infinitesimal parameter ζ :

δ
g

ζ Aµ = −Dµζ = −(∂µζ + [Aµ, ζ ])

δ
g

ζ γ = [ζ, γ ] with γ = (ψµ, χµν, η, φ, φ)
(4.54)

which lead to the usual BRST transformations, with δ
g

ζ → s and ζ → c, where c is the
Faddeev–Popov ghost transforming as sc = c2.

Concerning the supersymmetry generators (δαi , δ
i

α̇) of the N = 2 superalgebra, it turns
out that the twisting procedure gives rise to the following twisted generators: a scalar δ, a
vector δµ and a self-dual tensor δµν , which of course leave the action invariant. It is worth
emphasizing that SN=2 is uniquely fixed by the scalar δ and the vector δµ twisted charges. Due
to this property, the tensor generator δµν will not be taken into further account, although its
inclusion can be done straightforwardly.

In order to properly quantize the theory we collect all the generators (s, δ, δµ) into an
extended operator Q, which turns out to be nilpotent on-shell and modulo the space-time
translations

Q = s + ωδ + εµδµ (4.55)

Q2 = 0 + ωεµ∂µ + equations of motion (4.56)

where ω and εµ are global ghosts. The operator Q acts on the fields as

QAµ = −Dµc + ωψµ +
εν

2
χνµ +

εµ

8
η

Qψµ = {c, ψµ} − ωDµφ + εν
(
Fνµ − 1

2
F +

νµ

)
− εµ

16
[φ, φ̄]

Qχστ = {c, χστ } + ωF +
στ +

εµ

8

(
εµστν + gµσgντ − gµτgνσ

)
Dνφ̄

Qη = {c, η} +
ω

2
[φ, φ̄] +

εµ

2
Dµφ̄,

Qφ = [c, φ] − εµψµ

Qφ̄ = [c, φ̄] + 2ωη

Qc = c2 − ω2φ − ωεµAµ +
ε2

16
φ̄.

(4.57)

Following the Batalin–Vilkovisky procedure, for the complete gauge-fixed action we
obtain [30, 42]

� = SN=2 + Sgf + Sext (4.58)

where Sgf is the gauge-fixing term in the Landau gauge and Sext contains the coupling of the
nonlinear transformations Q�i to antifields �∗

i = (A∗
µ, ψ∗

µ, 1
2χ

∗
µν , η∗, φ∗, φ

∗
, c∗). They are
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given by6

Sgf = Q

∫
d4x Tr (c̄∂A)

Sext = Tr
∫

d4x

(
�∗

i Q�i +
g2

32

(
4ω2χ∗2 − 8ωεµχ

∗µνψ∗
ν + ε2ψ∗2 − (εψ∗)2

)) (4.59)

with

Qc̄ = b Qb = ωεµ∂µc̄ (4.60)

where, as usual, c̄, b denote the antighost and the Lagrange multiplier.
The complete action � thus satisfies the following Slavnov–Taylor identity:

S(�) = ωεµ�cl
µ (4.61)

where

S(�) = Tr
∫

d4x

(
δ�

δ�∗
i

δ�

δ�i

+ b
δ�

δc̄
+ ωεµ∂µc̄

δ�

δb

)
(4.62)

and �cl
µ is an integrated local polynomial

�cl
µ = Tr

∫
d4x

(
c∗∂µc − φ∗∂µφ − A∗ν∂µAν + ψ∗ν∂µψν − φ̄∗∂µφ̄ + η∗∂µη + 1

2χ
∗νρ∂µχνρ

)
.

(4.63)

Notice that �cl
µ , being linear in the quantum fields, is a classical breaking and will not be

affected by the quantum corrections. From the Slavnov–Taylor identity it follows that the
linearized operator B� defined as

B� = Tr
∫

d4x

(
δ�

δ�∗
i

δ

δ�i

+
δ�

δ�i

δ

δ�∗
i

+ b
δ

δc̄
+ ωεµ∂µc̄

δ

δb

)
(4.64)

turns out to be nilpotent modulo a total space-time derivative, namely

B�B� = ωεµ∂µ. (4.65)

The appearance of the space-time translation operator ∂µ in the right-hand of equation (4.65)
is due to the supersymmetric structure of the theory. Of course, the operator B� can be
considered nilpotent when acting on the space of the integrated local polynomials. Moreover,
as we shall see in detail, the presence of the space-time derivative ∂µ will give rise to a set
of nonstandard descent equations which will turn out to constrain very strongly the possible
nontrivial invariant counterterms. We will also be able to prove that these equations can be
solved in a systematic way by using the twisted N = 2 supersymmetric algebra.

Proceeding as in the previous example, we act with the operator ∂/∂g on both sides of
the Slavnov–Taylor identity (4.61). Observing then that the linear breaking term �cl

µ does not
depend on the coupling constant g, we get the condition

B�

∂�

∂g
= 0 (4.66)

which shows that ∂�/∂g is invariant under the action of B� . It remains to prove that ∂�/∂g

is nontrivial. We are led then to solve the consistency condition for the integrated invariant
counterterms

B�

∫
d4x "0 = 0 (4.67)

6 The presence of terms quadratic in the antifields in Sext is due to the fact that the operator Q is nilpotent up to the
equations of motion.
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where "0 has the same quantum numbers as the classical action of N = 2. Due to
equation (4.65), the integrated consistency condition (4.67) can be translated at the local level as

B�"0 = ∂µ"1
µ (4.68)

where "1
µ is a local polynomial with ghost number 1 and dimension 3. Applying now the

operatorB� to both sides of (4.68) and making use of equation (4.65), one obtains the condition

∂µ
(
B�"1

µ − ωεµ"
0
) = 0 (4.69)

which, due to the algebraic Poincaré lemma [40], implies

B�"1
µ = ωεµ"

0 + ∂ν"2
[νµ] (4.70)

for some local polynomial "2
[νµ] antisymmetric in the Lorentz indices µ, ν and with ghost

number 2. The procedure can be easily iterated, yielding the following set of descent equations:

B�"0 = ∂µ"1
µ

B�"1
µ = ∂ν"2

[νµ] + ωεµ"
0

B�"2
[µν] = ∂ρ"3

[ρµν] + ωεµ"
1
ν − ωεν"

1
µ

B�"3
[µνρ] = ∂σ"4

[σµνρ] + ωεµ"
2
[νρ] + ωερ"

2
[µν] + ωεν"

2
[ρµ]

B�"4
[µνρσ ] = ωεµ"

3
[νρσ ] − ωεσ"

3
[µνρ] + ωερ"

3
[σµν] − ωεν"

3
[ρσµ].

(4.71)

We observe that these equations are of a nonstandard type, as the cocycles with lower ghost
number appear in the equations of those with higher ghost number, turning the system (4.71)
nontrivial. We remark that the last equation for "4

[µνρσ ] is not homogeneous, a property which
strongly constrains the possible solutions. Actually, it is possible to solve the system (4.71) in
a rather direct way by making use of the N = 2 structure. To this end we introduce the operator

Wµ = 1

ω

[
∂

∂εµ
, B�

]
(4.72)

which obeys the relations

{Wµ, B�} = ∂µ {Wµ,Wν} = 0. (4.73)

This algebra is typical of topological quantum field theories [32, 33]. In particular, as shown
in [43], that the decomposition (4.73) allows one to make use of Wµ as a climbing-up operator
for the descent equations (4.71). It turns out, in fact, that the nontrivial solution of the system
is

"0 = 1

4!
WµWνWρWσ"4

[σρνµ] "1
µ = 1

3!
WνWρWσ"4

[σρνµ]

"2
[µν] = 1

2!
WρWσ"4

[σρµν] "3
[µνρ] = Wσ"4

[σµνρ]

(4.74)

with "4
[µνρσ ] given by

"4
[µνρσ ] = ω4εµνρσ Tr φ2. (4.75)

From equations (4.74) the usefulness of the operator Wµ now becomes apparent. Recalling
thus that the cocycle"0 has the same quantum numbers of theN = 2 Lagrangian, the following
relation holds:

∂�

∂g
= 2ω4

3g3
εµνρσWµWνWρWσ

∫
d4x Tr

φ2

2
+ B��−1 (4.76)

for some irrelevant trivial �−1. This equation shows that there is a one-to-one relationship be-
tween the solution of the lowest level of the descent equations (4.71) and the action of N = 2,
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so that the classical assumptions (i) and (ii) of section 2 are satisfied. Equation (4.76) implies
that the ultraviolet behaviour of N = 2 can be traced back to gauge invariant polynomial Tr φ2,
which plays the role of a kind of perturbative prepotential.

Concerning the quantum aspects, the Slavnov–Taylor identity (4.61) can be extended to the
quantum level without anomalies [44]. Also, the construction given in [40] can be generalized
to the set of descent equations (4.71), with the result that the cocycles "0, "1

µ, "2
[µν], "

3
[µνρ],

"4
[µνρσ ] can be promoted to quantum insertions with the same anomalous dimension. Finally,

the last requirement in order to apply the finiteness criterion is to establish the vanishing of
the anomalous dimension of the insertion [Tr φ2 ·�]. This important property has indeed been
proven in [30]. Without entering into further details, we limit ourselves here to remark that
the proof of the vanishing of the anomalous dimension of [Tr φ2 ·�] stems from a Ward iden-
tity relating Tr φ2 to the gauge invariant polynomial Tr(−3ω2cφ + c3)/ω4, whose anomalous
dimension vanishes due to the ghost equation [30]. In turn, this implies that [Tr φ2 · �] has
vanishing anomalous dimension as well. Moreover, in the present case, it has been possible to
prove that the classical equation (4.76) can be extended as it stands at the quantum level [30],
yielding the remarkable equation

∂�

∂g
= 2ω4

3g3

∫
d4x

[(
W4 Tr

φ2

2

)
· �
]

+ B�[�−1 · �] (4.77)

with W4 = εµνρσWµWνWρWσ .
We observe that this equation has the form of (3.29), implying, in particular, the absence

of the coefficients ã of equation (3.17). Therefore, the proposition of section 3.2 applies with
the result that the beta function of N = 2 SYM is indeed of one-loop order only, i.e. βg ∼ g3.

4.3. N = 4 super Yang–Mills

The case of the N = 4 SYM can be treated in a way similar to N = 2. Let us begin by
describing how the twisting procedure can be applied. The global symmetry group of N = 4
SYM theory in Euclidean space-time isSU(2)L×SU(2)R×SU(4), whereSU(2)L×SU(2)R is
the rotation group and SU(4) the internal symmetry group of N = 4. Hence the twist operation
can be performed in more than one way, depending on how the internal symmetry group is
combined with the rotation group [45]. We shall follow the procedure of Vafa and Witten [46],
in which the SU(4) is split as SU(2)F × SU(2)I , so that the twisted global symmetry group
turns out to be SU(2)′L ×SU(2)R ×SU(2)F , where SU(2)′L = diag (SU(2)L ⊕ SU(2)I ) and
SU(2)F is a residual internal symmetry group. The fields of the N = 4 multiplet are given
by (Aµ, λα

u , λ
u

α̇,�uv), where (u, v = 1, . . . , 4) are indices of the fundamental representation
of SU(4), and the six real scalar fields of the model are collected into the antisymmetric and
self-conjugate tensor �uv . Under the twisted group, these fields decompose as

Aµ → Aµ λ
u

α̇ → ψi
µ

λα
u → ηi, χi

µν �uv → Bµν, φij
(4.78)

where (i, j = 1, 2) are indices of the residual isospin group SU(2)F , φij is a symmetric tensor,
and χi

µν , Bµν are self-dual with respect to the Lorentz indices. Since in our analysis manifest
isospin invariance is not needed, we further explicit the SU(2)F doublets as ψi

µ = (ψµ, χµ),
ηi = (η, ξ), χi

µν = (χµν, ψµν) and the triplet as φij = (φ, φ, τ ). The action of N = 4 in
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terms of the twisted fields is given by7

SN=4 = 1

g2
Tr
∫

d4x

(
DµφD

µφ + iψµDνχ
µν + iχµDνψ

µν − χµD
µξ

+ψµD
µη − iφ{ψµν, ψ

µν} + iφ{χµν, χ
µν} + iτ {ψµν, χ

µν}
−{ψµν, χ

µρ}Bν
ρ − iχµν[ξ, Bµν] − iψµν[η, Bµν] + 4iφ{ξ, ξ}

−4i φ {η, η} + 4i τ {ξ, η} + ψµ [χν, B
µν] + i φ {χµ , χµ}

−iφ {ψµ,ψ
µ} − iψµ [χµ, τ ] − 4 [φ, φ] [φ, φ] + 4[φ, τ ][φ, τ ]

+[φ ,Bµν] [φ ,Bµν] − Hµ(Hµ − Dµτ + i DνBµν)

+Hµν

(
− Hµν +

i

4
F +

µν − 1

2
[Bµρ, B

ρ
ν] − i[Bµν, τ ]

))
(4.79)

where g is the unique coupling constant and Hµν , Hµ are auxiliary fields, with Hµν self-dual.
Concerning the generators (δαu , δ

u

α̇) of the N = 4 superalgebra, it turns out that the twisting
procedure gives rise to the following twisted charges [47]: two scalars, δ+ and δ−, two vectors,
δ+
µ and δ−

µ , and two self-dual tensors δ+
µν and δ−

µν . Of course, all twisted generators leave
the action (4.79) invariant. It is worth emphasizing that, as proven in [29], the action SN=4 is
uniquely fixed by the two vector generators δ+

µ, δ−
µ and by the scalar charge δ+. In other words,

the requirement of invariance under δ+
µ, δ−

µ and δ+ fixes all the relative numerical coefficients
of the various terms of the action (4.79). Thus, as done in the case of N = 2, the tensorial
transformations δ+

µν , δ−
µν will not be taken into account. The action of the twisted δ+ generator

on the fields reads
δ+Aµ = ψµ δ+τ = ξ δ+ψµ = Dµφ

δ+φ = 0 δ+χµ = Hµ δ+ξ = i [τ, φ]

δ+φ = −η δ+Bµν = ψµν δ+η = i[φ, φ]

δ+χµν = Hµν δ+ψµν = i[Bµν, φ]

δ+Hµ = i[χµ, φ] δ+Hµν = i[χµν, φ].

(4.80)

In the first column of equation (4.80) we recognize the scalar transformations of the twisted
N = 2 subalgebra in the presence of the auxiliary field Hµν . For δ− one gets

δ−Aµ = χµ δ−τ = −η δ−χµ = −Dµφ

δ−ψµ = −Hµ + Dµτ δ− φ= 0 δ−η = i[τ, φ]

δ−φ = −ξ δ−χµν = i[Bµν, φ] δ−ξ = i[φ, φ]

δ−Bµν = −χµν δ−ψµν = Hµν + i[Bµν, τ ]

δ−Hµν = −i[ψµν, φ] + i[χµν, τ ] + i[Bµν, η]

δ−Hµ = −Dµη + i[ψµ, φ] + i[χµ, τ ].

(4.81)

Analogously, for the vector transformations δ+
µ and δ−

µ one obtains

δ+
µAν = −4iχµν − 4gµνη δ+

µτ = χµ δ+
µφ = ψµ

δ+
µ φ= 0 δ+

µξ = Dµτ − Hµ δ+
µη = −Dµφ

δ+
µBνρ = −iθµνρλχ

λ δ+
µψνρ = DµBνρ + iθµνρλH

λ

δ+
µχνρ = iθµνρλD

λφ δ+
µχν = −4[Bµν, φ] + 4igµν[τ, φ]

δ+
µψν = 4iHµν + Fµν − 4igµν[φ, φ]
δ+
µHνρ = Dµχνρ + θµνρλ[ψλ, φ] + iθµνρλD

λη

δ+
µHν = Dµχν + 4[η, Bµν] + 4[ψµν, φ] − 4igµν[η, τ ] − 4igµν[ξ, φ]

(4.82)

7 The group generators are chosen here to be Hermitian.
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and

δ−
µAν = −4iψµν + 4gµνξ δ−

µ τ = ψµ δ−
µφ = 0

δ−
µ φ= −χµ δ−

µ ξ = −Dµφ δ−
µ η = −Hµ

δ−
µBνρ = +iθµνρλψ

λ δ−
µψν = −4[Bµν, φ] − 4igµν[τ, φ] (4.83)

δ−
µψνρ = −iθµνρλD

λφ δ−
µχνρ = −DµBνρ − iθµνρλH

λ + iθµνρλD
λτ

δ−
µχν = 4iHµν + Fµν + 4igµν[φ, φ] − 4[Bµν, τ ]

δ−
µHνρ = Dµψνρ + θµνρλ([ψ

λ, τ ] − [χλ, φ] − iDλξ) + i[ψµ,Bνρ]

δ−
µHν = −Dµψν + Dνψµ + 4[ψµν, τ ] − 4[ξ, Bµν] + 4[χµν, φ] + 4igµν[η, φ]

where θµνρσ denotes the combination

θµνρσ = εµνρσ + gµνgρσ − gµρgνσ = 4A+
µσνρ (4.84)

where A+
µσνρ is the projector on self-dual two-forms. Let us also give here the algebraic

relations among the twisted generators, i.e.

{δ+, δ+} = δ
g

−2φ {δ+
µ, δ

+} = ∂µ + δ
g

Aµ

{δ−, δ−} = δ
g

2φ
{δ−

µ , δ−} = ∂µ + δ
g

Aµ

{δ+, δ−} = δ
g
−τ {δ+

µ, δ
−} = 0

{δ−
µ , δ+} = 0 {δ+

µ, δ
+
ν } = δ

g

−8gµνφ

{δ−
µ , δ−

ν } = δ
g

8gµνφ
{δ+

µ, δ
−
ν } = δ

g

−4iBµν−4gµντ
+ equations of motion

(4.85)

where δ
g
γ denotes a gauge transformation with parameter γ .

In order to quantize the theory, we proceed as before and introduce a generalized BRST
operator Q which collects all the symmetry generators

Q = s + ω+δ+ + ω−δ− + ε+µδ+
µ + ε−µδ−

µ (4.86)

where s is the ordinary BRST operator for the gauge transformations, and ω+, ω−, ε+µ, ε−µ

are global ghosts [29]. Defining the action of Q on the Faddeev–Popov ghost c as

Qc = ic2 + (ω+2 − 4ε−2
)φ + (4ε+2 − ω−2

)φ + (ω+ω− + 4ε+µε−
µ )τ

+4iε+µε−νBµν − (ω+ε+µ + ω−ε−µ)Aµ (4.87)

it follows that the operator Q turns out to be nilpotent on shell and modulo a total derivative

Q2 = 0 + (ω+ε+µ + ω−ε−µ)∂µ + equations of motion. (4.88)

Introducing then a set of antifields �∗
i coupled to the nonlinear transformations of the fields

Q�i , for the external action we obtain

Sext = Tr
∫

d4x
(
�∗

i Q�i + 4g2ε+µε−ν
(
εµνρλA

∗ρH ∗λ − 1
2

(
B∗δ

ν H ∗
µδ − B∗δ

µ H ∗
νδ

)
−εµνρλψ

∗ρχ∗λ + 1
2

(
ψ∗δ

ν χ∗
µδ − ψ∗δ

µ χ∗
νδ

)))
(4.89)

where, for a p-tensor field

�∗
i Q�i = 1

p!
�

∗µ1...µp

i Q�iµ1...µp
.

Following [29], the gauge-fixing term in the Landau gauge is given by

Sgf = Q Tr
∫

d4x
(
c∂µAµ

)
+ 4g2ε+µε−ν Tr

∫
d4x εµνρλ∂

ρcH ∗λ (4.90)
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where the antighost c, introduced by shifting the antifield A∗
µ as A∗

µ → A∗
µ + ∂µc, is required

to transform as

Qc = b

Qb = (ω+ε+µ + ω−ε−µ)∂µc
(4.91)

where b is the Lagrange multiplier. Finally, the complete gauge-fixed action �

� = SN=4 + Sext + Sgf (4.92)

turns out to obey the following Slavnov–Taylor identity:

S(�) = (
ω+ε+µ + ω−ε−µ

)
�cl

µ (4.93)

with

S (�) = Tr
∫

d4x

(
δ�

δ�∗
i

δ�

δ�i

+ b
δ�

δc
+
(
(ω+ε+µ + ω−ε−µ)∂µc

) δ�
δb

)
(4.94)

and

�cl
ρ = Tr

∫
d4x

(− A∗
µ∂ρA

µ − H ∗µ∂ρHµ − 1
2B

∗µν∂ρBµν − τ ∗∂ρτ

− 1
2H

∗µν∂ρHµν + 1
2ψ

∗µν∂ρψµν + 1
2χ

∗µν∂ρχµν + ψ∗µ∂ρψµ

+χ∗µ∂ρχµ + ξ ∗∂ρξ + η∗∂ρη − φ∗∂ρφ − φ
∗
∂ρφ + c∗∂ρc

)
. (4.95)

As before, �cl
ρ is linear in the quantum fields, representing a classical breaking not affected by

the quantum corrections. The linearized Slavnov–Taylor operator B�

B� = Tr
∫

d4x

(
δ�

δ�∗
i

δ

δ�i

+
δ�

δ�i

δ

δ�∗
i

+ b
δ

δc̄
+ (ω+ε+µ + ω−ε−µ)∂µc̄

δ

δb

)
(4.96)

is nilpotent modulo a total derivative

B�B� = (ω+ε+µ + ω−ε−µ)∂µ. (4.97)

Repeating the same steps as in N = 2 SYM, it turns out that the one-to-one relationship (4.76)
generalizes [29] to

g
∂�

∂g
= −εµνρσ

96g2
WµWνWρWσ Tr

∫
d4x (ω+2 φ − ω−2 φ + ω+ω−τ)2 + B��−1 (4.98)

for some local polynomial �−1. In the present case the climbing-up operator Wµ is defined as

Wµ = 1

2

[(
1

ω+

∂

∂ε+µ
+

1

ω−
∂

∂ε−µ

)
, B�

]
(4.99)

and obeys the same relations (4.73).
Of course, the proof given in [30] can be repeated straightforwardly to show that the

insertion [Tr(ω+2 φ − ω−2 φ + ω+ω−τ)2 · �] has indeed vanishing anomalous dimension.
Therefore, according to our theorem, the ultraviolet finiteness of N = 4 to all orders of
perturbation theory follows from the vanishing of the one-loop beta function βg , which has
been very well known for a long time [19].
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5. Conclusion

In this work an algebraic criterion for the ultraviolet finiteness has been presented. The
whole framework relies on the analysis of the descent equations following from the integrated
consistency condition for invariant counterterms. In some cases, these equations allow one
to put in one-to-one correspondence the quantized action with a gauge invariant local field
polynomial. The vanishing at the quantum level of the anomalous dimension of this polynomial
leads to the finiteness theorem proven in section 3, stating that if the one-loop order coefficient
β(1)
g vanishes, then βg vanishes to all orders. The knowledge of the one-loop order beta

function β(1)
g enables us then to establish whether a given model can be made ultraviolet finite

to all orders of perturbation theory. In general, the vanishing of β(1)
g can be achieved by an

appropriate tuning of the various terms contributing to β(1)
g , amounting to a suitable choice of

the group representations of the field content of the model.
This result shares great analogy with the Adler–Bardeen nonrenormalization theorem for

the gauge anomaly. As is well known, the requirement of the vanishing of the one-loop
order coefficient of the gauge anomaly results, in fact, in a careful choice for the spinor
representations, leading to classify the so-called anomaly-free representations.

We also point out that the present algebraic set up has allowed us to cover the case in
which the beta function βg receives at most one-loop contributions, as in the N = 2 SYM.

Finally, it is worth mentioning that although the finiteness theorem has been discussed
for models with a single coupling constant, it can be generalized to the case when several
couplings are present. Of course, the derivative of the action � with respect to each coupling
will define a nontrivial element of the integrated cohomology of the linearized Slavnov–Taylor
operator B� . The beta functions of those couplings which can be put in correspondence with
unrenormalized local polynomials belonging to the cohomology of B� in the lowest level of
the descent equations will obey the finiteness theorem. On the other hand, the beta functions
of couplings related to nonintegrated cohomology classes in the first level of the descent
equations, corresponding to nontrivial pointwise invariant Lagrangians8, are free to receive
quantum corrections.
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